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Expressions are given for the Coulomb, dispersion, induction, charge-transfer, and exchange-re-
pulsion energies that permit a simple estimation of the overall interaction energy. The procedure 
is applied to several configurations of the ( N 2 ) 2 , (CO) 2 , and C 2 H 4 + C\2 complexes. 

Determination of the structure of a weak complex of two molecules represents an important task 
in both experimental and theoretical chemistry. Complexes of this type form a link between the 
free reactants and the activated complex on the reaction path which is one of the main reasons 
why they are of interest to chemists. Until recently experimentalists were able only to demonstrate 
the mere presence of weak complexes; the determination of their structure was too difficult 
a task. Some information (though not complete) about the structure has been obtained only 
recently f rom advanced spectroscopic experiments 1 ' 2 . Theoretical approaches on different 
levels of sophistication are still far f rom being able to give safe predictions of the structure 
of weak complexes. The only exception is the family of complexes of strongly polar molecules 
whose geometries are predicted correctly by nonempirical and semiempirical calculations3 . 
The situation with regard to the complexes o f ' n o n p o l a r molecules can be characterized by 
the example of as simple a complex as ( H 2 ) 2 . Here even the ab initio SCF CI calculat ions 4 ' 5 

are incapable of giving an unambiguous prediction of the order of ( H 2 ) 2 structures. Since 
the use of advanced methods is associated with the considerable cost, it is topical to look 
for procedures that would provide qualitative geometry estimates of simple molecular complexes 
without the use of computers. 

In this p a p e r w e h a v e a n a l y z e d the terms f o r the C o u l o m b , d ispers ion , i n d u c t i o n , 
charge-transfer and exchange -repu l s ion energies . W e a t t empted t o g ive t h e m e x -
press ions w h i c h w o u l d permit an e s t i m a t i o n o f the relat ive stabil i t ies o f v a r i o u s 
conf igurat ions o f d ia tomic as wel l as o f s o m e o ther s imple molecu les . A s tudy o f th is 
type has not b e e n under taken so far. T h e on ly data avai lable in the l i terature are 
the c o m p o n e n t s o f the total interact ion energy tabula ted for a particular pair o f m o l e -
cules in d i f ferent mutua l or i en ta t ions 6 . 

* Part VI in the series Weak I n t e r m o d u l a r Interactions; Part V: This Journal 40, 809 (1975). 
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1112 Hobza, Zahradmk: 

RESULTS AND DISCUSSION 

Table I presents contributions to the total interaction energy and, moreover, qualita-
tive data on the magnitude of the overlap of the frontier orbitals (+ and 0 mean 
effective (positive) and ineffective (vanishing) overlaps, resp.) in certain configura-
tions of donor-acceptor complexes of various types. In the following paragraphs 
the interaction energy components and the exchange repulsion energy will be dis-
cussed in more detail and the limits of applicability of the expressions given in Table I 
will be ascertained. 

Coulomb energy. The expressions for the dipole-dipole and quadrupole-
quadrupole (ECQ_Q) interactions are as follows6: 

= PrPt j-s in 0 r § i n CQS _ _ 2 cos 0 R cos 0 r ] , ( 1 ) 
r3 

EQ_q = { 1 - 5 cos2 0R - 5 cos2 0T - 15 cos2 0R cos2 0T + 

+ 2[sin 0R sin 0T cos (<PR — <PT) — 4 cos 0R cos 0 r ] 2 } , (2) 

where n and Q denote the respective dipole and quadrupole* moments, and where r 
s the distance between the centers of the two systems. The geometry data and the 
mutual orientation of the systems R and T are outlined in Fig. 1 and Table I. The 
expressions for the energy components given in Table I do not hold in general. In 
the case of the dipole-dipole interaction their use is restricted to diatomic mole-
cules (HF, HC1) and to polyatomic molecules in which the dipole moment is due to 
a particular group of atoms (e.g. a bond). With quadrupole-quadrupole interactions, 
the validity of the formulas is limited to a molecule of the cylindrical symmetry (e.g. 
the linear molecules H2, N2, C2H2). 

Induction energy. The induction energy6 was evaluated by means of the following 
formula 

E 1 = - i r - V X P cos2 0 R + 1 ) , (3) 

where pi and a are the electric dipole moment and the polarizability respectively. 
Geometries assumed are specified in Table I. The expression (3) can be applied 
to interactions of a dipole T with an uncharged spherically symmetric molecule R. 
Conclusions drawn in Table I can be applied to diatomic dipoles or to polyatomic 
molecules in which a certain group of atoms gives a prevailing contribution to the 

* The tensor of the molecular quadrupole moment can be specified by a scalar Q provided 
the molecule is of cylindrical symmetry. 
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1114 Hobza, Zahradnik: 

total molecular dipole moment . Since the system R is spherically symmetric, we as-
sumed only the configurations 1 — 5. 

Dispersion energy. The original London formula 7 for the dispersion energy is not 
suitable for our purposes because it was derived for systems with isotropic polariza-
bility, i.e., for systems of spherical symmetry, e.g., a toms. In this paper we adopted 
the expression which makes use of bond polarizabilities8 . Since our goal is to predict 
the order of stabilities of individual structures, all constants (e.g., ionization potential, 
polarizability) referring to systems R and T were introduced into constants Cx — C 5 . 
This gives Eq. (4) which holds only for two bonds (one in R, the other in T): 

ED = CX{C2 + C3(3 C O S 2 0 R + 1) + C 4 (3 cos2 0T + 1) + 

+ C5[2 COS 0R COS 0T — s i n 0 R s i n 0T + c o s & R c o s <PT~\] , (4) 

where 

c , - M - ' W . = 

' 4 r 6 [ I (R) + J (T) ] - " T 3 S T 

C 4 = (XJSR , C5 = 8RSJ , 

C j is negative, C 2 — C 5 are positive, l(R) and l(T) mean ionization potentials 
of systems R and T; aR and a^ are the transversal and longitudinal polarizabilities 
of the bond in R, dK, and ST being the respective difference. The data on the geometry 
are given in Table I. As stated above Eq. (4) holds only for two bonds, though the 
expressions of Table I can also be applied to polyatomic molecules if the polarizability 
of a particular bond is dominant (the C — N , C—C, and C — O bond in H C N , C 2 H 4 , 
and H 2 C O , resp.). 

In the case of Coulomb and induction energies, Table I permits the direct prediction 
of the order of stabilities of individual structures. With the disperison energy it is 
only possible to state that the most favoured configurations are 1 and 5, next 2 and 4, 
and the least stable configuration is 8. Fo r the sake of illustration we present in 
Table II the da ta on the dispersion energy fo r several configurations of the (N 2 ) 2 

complex (r = 3 . 1 0 " 1 0 m and 4 . 1 0 " 1 0 m). The entries of the table predict the 
stabilities of configurations to be in the order 1 and 5, 2 and 4, 3, 6, 7, 8. The respec-
tive differences are seen to be rather small in absolute value. 

Charge-transfer energy. The following simple expression for the charge-transfer 
energy between a donor and acceptor was derived by Mulliken9 

ECT= — | C S m n | 2 / A £ ( m -> n) , (5) 

where C is a constant, S m n is the overlap integral between the front ier M O s m and 

Col l ec t i on Czechos lov . Chem. C o m m u n . [Vol. 41] [1976] 



Geometry of Molecular Complexes 1115 

n (m being in the R system, n in the T system), and AE(m -> n) is the respective tran-
sition energy. If a complex of two systems stabilized by the charge-transfer energy 
is treated and if the order of stabilities of different configurations is to be ascertained, 
it is possible to consider merely the overlap between the orbitals m and n. Stability 
can be expected for those configurations of the complex where the overlap is non-
vanishing. We considered the configurations 1 — 8 with orbitals m and n of the n,a; 
7i*, <r*-types as outlined in Fig. 2. 

Exchange-repulsion energy. Murrell, and coworkers10 arrived at the expression 
for the exchange-repulsion energy by making use of the perturbation treatment. 
If in the interaction only two atoms are involved, it is possible to obtained reason-
able values by means of the following simple relationship10 

EER = Z Ecr-1^. (6) 
a b 

The summations in (6) run over the AOs of the two atoms, c is a constant, Sab is the 
overlap integral between orbitals a and b, and r is the interatomic distance. Eq. (6) 
has also been applied11 to molecules, the summation extending over all AOs of indi-
vidual molecules. The remaining problem is to evaluate the constant. This however 
can be disregarded if only qualitative estimates of EER are to be made for different 
configurations of a particular complex. 

We now apply the above conclusions to several simple complexes. 

1. The N 2 —N 2 complex. Here the attraction is mainly due to the dispersion energy, 
and to a lesser extent, to the Coulomb (quadrupole-quadrupole) energy. The disper-
sion interaction favours the configurations 1 and 5; lesser stabilization is found with 

TABLE I I 

Coulomb Quadrupole-Quadrupole Dispersion (ED), and Total Attraction (ET = 
E ) Energies (in kJ/mol) for Different Configurations of the (N2)2 Complex 

r= 3 . 10~10 m r= 4 . 10~10 m 
Configuration" 

EQ-Q e D ET EQ-Q £D ET 

1. 0-728 -6-933 -6-205 0-172 -2-469 -2-297 
2. — 0092 5-962 -6054 - 0 021 2-121 -2-142 
3. -0-364 -4-996 -5-360 -0-088 -1-778 -1-866 
6. 0-272 -4-176 -3-904 0-063 -1-485 -1-423 
8. 0-092 -3-950 -3-858 0-021 -1-406 -1-385 

a The configurations are outlined in Table I. 
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1116 Hobza, Zahradm'k: 

2, 4, and 3. The quadrupole-quadrupole interaction favours the configurations 3, 2, 
4 and destabilizes 1 and 5. The two energy contributions and their sums are entered 
in Table II for several configurations with r = 3 .10" 1 0 m and r = 4 .10" 1 0 m. In the 
calculation the following values12 '13 were used: Q = 4-7 . 10_ 4° Cm; aL = 2-38 . 
. 10- 3 0 m3 ; ocT = 1-45 . 1(T3 0 m3 ; I = 15-6 eV = 1505 kJ. Table II shows that 
the dispersion energy is considerably lower than the Coulomb energy* in all configura-
tions and, moreover, that the total attraction energies for the configurations 1, 2, and 3 
are close in value. Apparently, the most stable one among them will be that which is 
the poorest in the exchange-repulsion energy. Let us examine the respective con-
figurations for r = 3 . 10"1 0 m. Assuming the constant c in (6) is independent of the 
interatomic distance, the exchange-repulsion energies for the configurations 1, 2, and 3 
become 0-0452c, 0-0194c, and 00053c, respectively.** Since c, which is always posi-
tive and which amounts (for r = 3 . 10"1 0 m) approximately to 3300. 10"1 0 

mkJ/mol, the lowest exchange-repulsion energy is predicted for configuration 3. Con-
figuration 3 is associated with the most negative total interaction energy and is there-
fore predicted to be the most stable. The (N2)2 complex was studied experimentally 
by Ewing1. From indirect evidence (both theoretical and experimental), the authors1 

concluded that the T shaped configuration of (N2)2 dimer is probable. 

2. The CO—CO complex. The attraction energy is primarily due to the dispersion 
energy and only to a non-significant extent due to the dipole-dipole interaction 
energy. The dispersion energy term favours configurations 1 and 5. The values of the 
two energy terms and their sums are presented in Table III for several configurations 
with r = 2 . 10~10 m and r = 3 . 1 0 - 1 0 m. This relatively small value has been used 
in order to show that the Coulomb term is very small even at rather short distances. 
The calculations were based on the following values 1 4 - 1 6 : ju = 0-40 . 10~30 Cm; 
aL = 2-6 . 10~30 m3, aT = 1-62 . 10~30 m3, / = 14-0 eV = 1351 kJ. It is seen that 
the dispersion energy is two orders higher than the Coulomb energy in all configura-
tions. The insignificant magnitude of the Coulomb energy is understandable with 
respect to the low dipole moment of the CO molecule. It should be noted that the 
dipole moments of polar molecules are considerably higher,14 e.g. /i(HCl) = 3-67 . 
. 10"3 0 Cm, n(U20) = 6-15 . 10"'30 Cm, //(NaCl) = 28-39. 10"3 0 Cm. Obviously, 
the dipole-dipole interaction energy in the pairs of HC1 and NaCl molecules is much 
higher than it is in CO. For the sake of comparison we present its values (in kJ/mol) 

* It should be recalled that the quadrupole moment of the N 2 molecule is rather high com-
pared to other molecules. For example in H 2 , 0 2 , F2 , and C 0 2 it is12 2-17, —1-3, 3 0, and 
- 1 4 - 4 . 1 0 " 4 0 Cm, resp. 
** These values were given by calculations in which all AOs of the two systems were taken 
into account. By examination of overlaps of different pairs of AOs one finds that the squares 
of overlaps are close to zero unless the two orbitals are of the 2s and 2px types and are located 
on the nearest atoms of the two systems. 
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Geometry of Molecular Complexes 1117 

for the configurations 1, 2, 3, 6 and 8 of (HC1)2 ( -5-401, -2-700, 0, 2-700, 0) and 
(NaCl)2 (-322-55, -161-28, 0, 161-28, 0) for r = 3 . 10"1 0 m. 

3. C2H4—Cl2 complex. With this complex no significant Coulomb energy can be 
expected. As in the foregoing cases, the dispersion energy favours the configurations 
1 and 5, 2 and 4, and 3. Since the C 2 H 4 molecule is a rather strong electron donor 
and Cl2 a rather strong acceptor, a significant charge-transfer energy can be anticipat-
ed. The complex is of the n-o* type. A nonzero overlap between the HOMO in C 2 H 4 

and LFMO in Cl2 is only found with configurations 3 and 8 (see footnote b in Table I). 
It should be emphasized that the conclusions about the dispersion and charge-transfer 
energy do not hold only for the configuration 3 (the two systems lie in the yz plane — 
cf. Fig. 1), but also for a complex of the same shape, where two molecules lie in 
perpendicular planes yz and yx (in the literature this shape is called axial). The 
C2H4—Cl2 complex has recently been studied experimentally and theoretically by 
Nelander1 7 '1 8; it was concluded that the structure is axial. 

Up to now we were concerned with the estimates of the most stable structures 
of complexes formed by two diatomic (or polyatomic) molecules. Next we treat 
two other cases important for practical purposes — the complexes formed by an ion 
and a molecule or by an atom and a molecule. 

X 

T 

y ! 

FIG. 1 
Orientation of Molecules R and T 

Points r0 and t0 represent the geometrical centres of molecules R and T. The staggered lines 
passing through r0 and tQ are directions of dipoles and quadrupoles of cylindrically symmetric 
systems R and T. The angles 0T and 0R are situated in the xz-plane. 

x 
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Shapes of the Frontier Orbitals of the Elec-
' tron Donor and Acceptor d o n o r acceptor 
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The Interaction Ion-Molecule 

Coulomb energy. In the multipole expansion1 9 we restrict ourselves to the first 
two terms, i.e., to the interactions of the charge of one system with the dipole and 
quadrupole of the other: 

E c = ^ c o s 0 + ^ ( f c o s 2 6 > - i ) . (7) 
r r* 

Here q stands for the charge of the ion, the other symbols have the same meaning 
as in the preceding relationships (Fig. 1). 

Induction energy. We restrict ourselves to the first term of the respective ex-
pansion1 9 . This term corresponds to the interaction of the charge of one system with 
the induced charge of the other: 

£ ' = - [a + - « i ) (3 cos2 0 — 1)] . (8) 

Here a, ay, and a x mean, respectively, the total polarizability and its components 
along and at the right angle to the axis of symmetry. 

The dispersion term is disregarded in this case because it is negligible with respect 
to terms mentioned above. 

The Interaction Atom-Molecule 

Dispersion energy. This is given19 by the following relationship 

ED = - \ r~6[ocRocT + - a x ) r (f cos2 0 - *)] . (9) 
2 IR + I T 

If r is constant, it is possible to write 

ED = C t [ C 2 + iC 3 ( f cos2 0 - 1)] . (10) 

For the constants Cu C2, and C3 it holds C1 < 0, C2 > 0, C 3 > 0. 

Induction energy. The truncation of the multipole expansion1 9 to the very first 
term, which is due to the interaction of the dipole of one system with the induced 
dipole of the other, gives us 

£ ' = - 0 ( 3 cos2 0 + 1 ) . (11) 

Col lec t ion Czechos lov . Chem. C o m m u n . [Vol. 41] [1976] 



Geometry of Molecular Complexes 1119 

Table IV presents results for the linear and T s h a p e d configurations: Coulomb and 
induction energies fo r the complex positive ion-molecule and dispersion and induc-
tion energies for the complex atom-molecule. 

In the interaction ion-dipole bo th Coulomb and induction terms favour the linear 
structure (ay is always higher than oc±). In contrast , the interaction ion-quadrupole 

TABLE I I I 

Coulomb Dipole-Dipole CEj_„), Dispersion (E°), and Total Attraction (ET = + ED) 
Energies (in kJ/mol) for Different Configurations of the (CO)2 Complex 

r= 2. 10~10 m r= 3 . 1 0 - 1 0 m 
Configuration0 -

ED Et Ed Et 

1. -0-218 -85-182 -85-400 -0-063 -7-477 -7-540 
2. — 0-109 — 73-835 -73-944 -0-033 -6-481 -6-514 
3. 0-0 -62-488 -62-488 0-0 -5-485. -5-485 
5. 0-218 -85-182 -84-964 0-063 -7-477 -7-414 
6. 0-109 — 52-455 -52-346 0-033 -4-607 -4-573 
7. - 0 1 0 9 -52-455 -52-564 - 0 0 3 3 -4-607 -4-640 
8. 0-0 -49-919 — 49-919 0-0 -4-381 -4-381 

a The configurations are outlined in Table I. 

TABLE I V 

Expressions for Coulomb (Ec), Induction (E1), and Dispersion (E°) Energies for Linear and 
T-Shaped Configuration of Positive Ion-Molecule and Atom-Molecule Complexes 

Positive ion-molecule 
Configuration Atom-molecule 

Ec E1 

_ _ E » E1 

q — n q— Q 

• -> 
qH qQ y2<x\\ 

CXC2 + K 1 C 3 
2 fi2a. 

• -> 
r2 r 3 2 r 4 CXC2 + K 1 C 3 ~ TeT 

• t 0 1 qQ 
2 r 3 

q2ctL 

2 r 4 
1 n2a 

~ 2 

• 
qn 
72 

qQ 
r 3 

A , , 
2 r 4 + K 1 C 3 

2H2K 
r6 
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1120 Hobza, Zahradnik 

favours the T shaped configuration. In the case of the interaction atom-molecule, 
the linear structure is favoured by both the dispersion term (recall that is always 
negative and C2 and C 3 are always positive) and the induction term. 

These qualitative considerations conform to the ab initio SCF and SCF-CI cal-
culations. Kutzelnigg and coworkers 2 0 studied the L i + + H 2 interaction (ion-quadru-
pole). Their bo th SCF and SCF-CI calculations favour the T shaped configuration. 
Tsalpine and Kutzelnigg2 1 studied the H e — H 2 complex and demonstra ted that the 
deepest potential well is due to the linear configuration. 
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